
I. INTRODUCTION

Functionally graded materials (FGM) are special class of 
composites of two or more constituent phases with continuous 
smoothly varying material composition and material properties 
across the thickness [9]. One of the major drawbacks of 
traditional composites is that localised high stresses are 
developed at discrete boundaries between constituent material 
phases when exposed to high-temperature environment, 
leading to de-bonding, loss of stiffness and ultimately to 
failure of the structural member [7]. This problem of localised 
high stresses and resulting loss of strength is eliminated in 
FGM as there are no discrete boundaries between constituent 
materials. This makes FGMs ideal for high-temperature 
applications such as nuclear reactors, space vehicles etc. [9].

FGMs can be manufactured by ion implantation, shot 
peening, thermal spraying, electrophoretic deposition or 
chemical vapour deposition and the material composition and 
grading can be precisely controlled to have desired properties 
[11]. For example, in metal – ceramic FGM, ceramic 
constituent provides high-temperature resistance and protects 
the metal from oxidation, while the ductile metal constituent 
prevents fracture caused by stresses due to high-temperature 
gradient in a very short distance. 

In a number of structural applications, FGMs are used in 
the form of plates. In thin plate structural members, buckling 
strength is a critical consideration for design, together with 
flexural and axial strength. Therefore, determination of critical 
buckling load and buckling coefficient for various material 
combinations and boundary conditions is important for 
structural applications of FGM. A number of research works 
on buckling analysis of FGMs have already been carried out 
[1], [5], [6], [10], [12]-[16]. 

. ANALYSIS OF FUNCTIONALLY GRADED
PLATES

The geometry of an elastic functionally graded plate [4] is 
shown in Fig. 1. The X-Y plane defines the mid-plane of the 
plate, and the z-axis originating at the middle surface of the 
plate is in the thickness direction.

The classical plate theory (CPT) and higher order shear 
deformation theories used for the analysis of isotropic plates 
can be extended to the analysis of FGM plates [11]. In the 
present work, CPT is used for the analysis of FGM plates. In 
CPT, it is assumed that the transverse normals to the mid-
plane of the un-deformed plate remain straight and normal 
after deformation. The deformation is entirely due to the 
bending and in-plane stretching and the effect of transverse 
stresses are ignored [17]. 

The heterogeneous material properties, varying smoothly 
across the thickness of the plate, can be idealised by some 
homogenisation schemes for analysis. The various 
homogenization schemes used for idealising the variation of 
Young’s modulus (E) across the thickness are power-law,
sigmoid and exponential functions and these are designated as 
PFGM, SFGM and EFGM respectively [9]. In the present 
work, idealisation by power-law function is used. As the effect 
of Poisson’s ratio in the deflection of structural members is 
negligible when compared to that of Young’s modulus [4], 
Poisson’s ratio is considered as a constant in the analysis. 

The power law function ( ) used for idealising the 
variation of E across the thickness (h) is defined by the 
equation,
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Fig. 1 The geometry of an FGM plate 

(1)

where z is the distance from the mid surface in the z-direction.

Once the power function is obtained, the E can be 
obtained by the rule of mixtures as, 

     (2)
where E1 and E2 are the Young’s moduli of the bottom and top 
surfaces (z = ±h/2) of the functionally graded plate 
respectively. The variation of E across the thickness of the 
plate as defined by the power law function [4] is as shown in 
Fig. 2. 

Since exact analysis of buckling of FGM plates for 
complex boundary conditions and loading conditions is 
cumbersome and time consuming, approximate methods of 
analysis can be used. Finite element method (FEM), which is 
the most widely used approximate method of analysis for 
structural members, has a number of limitations when applied 
to stability and non-linear analysis of long thin rectangular 
plates, especially when iterative techniques are involved. In 
FEM, plate is discretised into a number of elements with 
approximately the same aspect ratio as that of the structural 
member, resulting in a large number of elements and 
consequently greater memory and computation time 
requirements. Finite strip method, which takes advantage of 
the prismatic nature of geometry by discretising the plate into 
strips instead of elements, can be effectively used to reduce 
the memory requirements without compromising on accuracy 
[8]. Here the displacement along the length of the strip is 
represented by a trial function and the displacement across the 
strip is represented by polynomial shape function. 

In classical finite strip method (CFSM), trigonometric series 
is used as the trial function to represent the displacement along 
the strip. Since trigonometric displacement function is 
infinitely continuous, CFSM fails to deal with complex 
boundary conditions and partial and concentrated loads. Spline 
finite strip method (SFSM), which uses spline function to 
represent displacement in the longitudinal direction, can 
overcome the deficiencies of trigonometric function. 

Spline function is a piecewise polynomial of nth
degree, connected to the adjoining splines. Since the basic 
cubic spline

Fig. 2 Variation of E as per the power function 

(B3 spline) is continuous over the first two derivatives and is 
discontinuous over the third derivative; it is suitable for 
representing plate-bending behaviour. B3 splines spanning 
over four consecutive sections are highly localised, resulting 
in highly banded stiffness matrix. In the present study, equally 
spaced cubic splines are used. 

III. PROBLEM FORMULATION

The stiffness matrix of thin functionally graded plates with 
thickness less than 0.1 times the lateral dimension can be 
formulated based on CPT. The normal and shear stresses σx
σy and τxy are derived and the stress resultants are obtained by 
integrating the stresses over the thickness. The normal forces 
and bending moments are given by (3) and (4). 

 (3) 

 (4) 

The coefficients Aij, Bij and Cij are obtained by integrals 
as shown in (5). 

(5)

The load corresponding to elastic buckling is obtained by 
linear stability analysis, which is carried out by formulating 
the eigenvalue buckling problem and then solving it by any of 
the iterative methods. The equilibrium equation, neglecting the 
body forces, inertia effects and external lateral loading leads to 
the set of homogeneous equations, 

(6)
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where [KG] = Geometric stiffness matrix, and

λ   = Load parameter 

Geometric stiffness matrix is the initial stress matrix, 
which depends only on the in-plane stresses and the geometric 
parameters. The smallest eigenvalue is the critical load and the 
eigenvector gives the buckling mode shapes [8]. There are a 
number of methods available for solution of eigenvalue 
problems. In this work, inverse iteration method is used for 
solving the eigenvalue buckling problem. 

IV. RESULTS AND DISCUSSION

A rectangular functionally graded plate of sides 100 mm 
and thickness 1 mm, simply supported on all four edges, acted 
upon by in-plane concentrated load is analysed. The variation 
of Young’s modulus across the thickness of the plate is
idealised by power law function and the Poisson’s ratio (ν) is 
constant at 0.3. Only a quarter of the plate is analysed, taking 
advantage of the symmetry in geometry. The rectangular plate 
is discretised into four strips by five longitudinal nodal lines 
with five knots in each nodal line. The variations of 
displacements along the longitudinal and lateral directions are 
represented by a series of cubic splines and the polynomial 
shape function respectively. The critical buckling load and the 
buckling coefficient are obtained by spline finite strip method 
(SFSM), which is implemented in Visual C++. The influence 
of aspect ratio, power law index and the material composition 
(E1/E2 ratio) on the critical buckling load and buckling 
coefficient are studied. 

For validating of the SFSM program implemented in 
Visual C++, the critical buckling load (Pcr) of isotropic square 
plate of side b and flexural stiffness D simply supported on 
four edges is obtained using the program. The buckling 
coefficient (k) is calculated by (7), and is compared with the 
exact value [3] as shown in Table 1. 

 (7) 

Once SFSM program is validated, it can be extended to the 
analysis of FGM plates. Buckling coefficient of FGM plate 
can be calculated by (7), where D is replaced with C11
obtained by (5). 

Table 2 shows the critical buckling load and buckling 
coefficient of PFGM plates simply supported on four edges for 
various values of power-law index, E1/E2 ratio and aspect 
ratio. The variation of critical buckling load and buckling 
coefficient with aspect ratio for E1/E2 = 2 and p = 1 and p = 10 
is shown in Fig. 3 and Fig. 4 respectively. 

It is observed that square plate (aspect ratio = 1) has the 
minimum values of critical buckling load and buckling 
coefficient. The critical buckling load decreases sharply as the 
aspect ratio is increased from 0.5 to 1. As the aspect ratio is 
further increased, the critical buckling load rises steadily and 
reaches a maximum value at an aspect ratio of about 1.75. Up 

to an aspect ratio of 1.75, the plate buckles in the first mode 
and after this point, the plate buckles in the second mode. As 
the value of aspect ratio is further increased, the critical 
buckling load first decreases up to an aspect ratio of 3 and 
thereafter the critical buckling load again increases. After an 
aspect ratio of 4, the plate buckles in the third buckling mode. 

The critical buckling load and buckling coefficient of a 
square PFGM plate simply supported on four edges are 
calculated for various values of power-law index for E1/E2 = 2 
and E1/E2 = 5. The results are shown in fig. 5 and fig. 6. 

2.1 X 105 4 4

VARIATION OF BUCKLING BEHAVIOUR WITH ASPECT
RATIO

0.5 86.117 70.118 62.038 38 153 6.05 6.18 5.45 5.64 

1 55.638 45.026 41.359 25.173 3.91 3.97 3.63 3.72 

2 65.628 53.125 48.851 29.730 4.61 4.68 4.29 4.39 

Fig. 3: Variation of critical buckling load with aspect ratio

Fig. 4: Variation of buckling coefficient with aspect ratio
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The critical buckling load and buckling coefficient of a 
square PFGM plate simply supported on four edges are 
calculated for various values of power-law index for E1/E2 = 
2 and E1/E2 = 5. The results are shown in fig. 5 and fig. 6.

The critical buckling load decreases with increase in power 
law index (p). From Fig. 2 it is seen that for low values of p, 
the effect of the higher value of Young’s modulus (E1) is 
predominant over that of the lower value (E2). Therefore, the 
stiffness of the plate at lower values of p is greater than that at 
higher values of p. This may be the reason for the reduction in 
critical buckling load with increase in p. The value of buckling 
coefficient decreases with increase in the value of p up to 
about 2 to 3 and thereafter it increases with the value of p. 

The critical buckling load and buckling coefficient of a 
square PFGM plate simply supported on four edges are 
calculated for various values of E1/E2 ratio for p = 1 and p = 
10. The results are shown in fig. 7 and fig. 8.

As the E1/E2 ratio increases, the critical buckling load and
buckling coefficient of PFGM plate decrease. As the value of 
E1/E2 ratio increases, the flexural stiffness of the functionally 
graded plate decreases, as the value of E2 is decreased keeping 
the value of E1 constant. This is the reason for decrease in 
critical buckling load and buckling coefficient. At low values 
of E1/E2, the critical buckling load and buckling coefficient 
for various values of p are close together. With increase in the 
value of E1/E2, the divergence between the values of critical 
buckling loads for various values of p increases. But the 
values of buckling coefficients for various values of p are 
close together for all values of E1/E2 as shown in fig. 8. 

Fig. 5: Variation of critical buckling load with power law index 

Fig. 6: Variation of buckling coefficient with power law index 

Fig. 7: Variation of critical buckling load with E1/E2 ratio 

Fig. 8: Variation of buckling coefficient with E1/E2 ratio 

V. CONCLUSIONS

The minimum value of critical buckling load and
buckling coefficient for rectangular PFGM plate simply
supported on all four edges occur for the square plate.

The functionally graded plate simply supported on all
the four edges buckle in the first mode up to an aspect
ratio of 1.75, and thereafter the plate buckles in the
second modes.

The values of buckling coefficient of square plate are
lower than that of the isotropic plate having Young’s
modulus equal to E1.

The critical buckling load of PFGM square plates
decrease with increase in power law index, whereas the
buckling coefficient first decreases and then increases.

The critical buckling load and buckling coefficient of
PFGM plate decrease with increase in E1/E2 ratio.

The variation in the buckling behaviour of PFGM
plates with E1/E2 ratio is very low at low values of p,
but as the value of p is increased, the buckling
behaviour shows wide variation with the change in
value of p.
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